
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001 217

Inductance Extraction of Multilayer Finite-Thickness
Superconductor Circuits

Mikhail M. Khapaev

Abstract—In this paper, an efficient numerical technique is presented for
inductance extraction and current calculation in multilayer planar super-
conductor microelectronic circuits. The rigorous definition of a three-di-
mensional problem based on London equations and stream function is pre-
sented. The finite thickness of conductors is taken into account. The results
can be directly applied to perfect and extended to normal conductors.

Index Terms—Finite-element method, impedance, inductance, normal
conductors, perfect conductors, sheet current, stream function, supercon-
ductivity.

I. INTRODUCTION

In this paper, the problem of three-dimensional (3-D) electromag-
netic modeling of superconductive multilayer planar multiconnected
microelectronic circuits is considered. These circuits can be digital, su-
perconducting quantum interference devices (SQUIDs), some modern
high-Tc [1], [2], or microwave devices.

The shape of modern circuits can be very complex. Magnetic field in
such layouts essentially has a 3-D structure. This circumstance practi-
cally excludes the implementation of simplified two-dimensional (2-D)
models, transmission line or planar [2].

One of the problems we meet is that conductors cannot be accepted
as infinitely thin because the thickness of conductors and dielectric
layers and London penetration depth are of same order of magnitude
[3], [9].

Earlier, the problem of 3-D inductance extraction for superconduc-
tors was considered in [3]–[6]. These works are based on a technique
that is known for normal conductors [7] as the partial-element equiv-
alent-circuit (PEEC) method. For superconductors, the most complete
realization of this method is presented in [3]. It was found [3], [2] that
practical calculations can be very time and memory consuming even
with fast solvers [8]. Thus, it was necessary to continue the develop-
ment of a more efficient numerical technique.

The implementation of stream function (orT -function or vector po-
tential representation) can overcome these problems.

For inductance calculation of perfectly conducting foils (sheet cur-
rents), a stream function was used in [10]. In our case, methods [10] are
inadequate because we consider more complicated structures. More-
over, the numerical technique [10] is not accurate enough and can be
improved.

In this paper, we propose a new numerical approach, which can im-
prove the PEEC method for planar objects. The rigorous definition of
the problem based on London equations and stream function is pre-
sented. All excitation currents are defined by simple boundary condi-
tions of the first kind in the way similar to Laplace equation. The matrix
of self and mutual inductances is defined using full energy.

The numerical technique of current research is a further development
of [11]. The finite-element method on a triangular mesh with linear
finite elements is used. For these finite elements, the current density
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is simulated by circulation currents with piecewise-constant density.
This numerical technique is proved enough and leads to the system of
linear equations with positively definite symmetric dense matrix. The
results of calculations for a substantially 3-D problem, strip over hole
in ground plane, are presented.

The numerical technique and program of current research are not
restricted to only superconductor circuits. Setting London penetration
depth to zero, the program can be implemented for quasi-static anal-
ysis of perfectly conducting foils with possible application to various
transmission-line discontinuities, baluns, and inductors.

II. PRELIMINARIES

In this paper, we study the currents in conducting layers separated by
layers of dielectric. Lettm be the thickness of conducting layers and
dk be the thickness of dielectric layers, andk,m be the numbers of the
layers. Conducting layers can contain few single-connected conductors
of arbitrary shape. Let the number of conductors in all layers beNc and
the total number of holes in all conductors will beNh. Each conductor
can have current terminals.

For a large class of microwave and digital circuits, it can be assumed
[2], [3]

dk � l tm � l �m � tm (1)

wherel is the typical lateral size of the circuit in plane(x; y), and�m
is the London penetration depth.

Each conductor occupies space domainVm = Sm � [h0m; h
1

m],
m = 1, . . ., Nc. The 2–D domainSm is the projection of the con-
ductor on the plane(x; y). We call the boundary of the conductor@Sm
the boundary of the projectionSm. Let @Sh; k be the boundary of the
hole with numberk, and@Sext;m be the external boundary of themth
conductor. We assume that all current terminals are on the external
boundary of the conductors.

The magnetic field is excited by currents circulating around holes
and currents through chains of terminals on the conductors. LetNt be
the number of these terminal chains. Thus, the total numberN = Nt+
Nh of excitation currents is the dimension of the inductance matrix. As
the extraction of the inductance matrix includes the current simulations,
we will concentrate on the problem of inductance calculation.

For further convenience, letP ,P0 stands for points in 3-D space, and
r, r0 stands for points on plane. Also, consider differential operators
@x = @=@x, @y = @=@y, andrxy = (@x; @y).

III. L ONDON EQUATIONS FORCONDUCTORS OFFINITE THICKNESS

The basic equations for further consideration are static London equa-
tions [1]. Let~j be the current density,~B be its magnetic field, and� be
the London penetration depth. The basic equations are

�0�
2
r�~j + ~B =0; (2)

r� ~B =�0~j: (3)

From (1) andx, y components of vector equation (2) followsjz � 0,
~j � ~j(x; y). Thenz-component of (2)

�0�
2 @xjy(P0)� @yjx(P0) +Bz(P0) = 0 (4)

is the governing equation for the current in the plane(x; y).
Consider the sheet current density~Jm(r)

~Jm(r) =
h

h

~j(P ) dz; r 2 Sm: (5)
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The magnetic field in (4) is calculated by means of average current
density ~Jn(r)=tn and the Biot–Savart formula

~B(P0) =
�0
4�

N

n=1 V

1

tn
~Jn(r)�rP

1

jP � P0j
dvP : (6)

Consider London penetration depth for films

�sm = �2m=tm: (7)

Averaging (4) over the thickness of conductors, we obtain the following
equations for the sheet currents in conductors

�sm(@xJm;y(r0)� @yJm;x(r0)) (8)

+
1

4�

N

n=1 S

~Jn(r)�rxyGmn(r; r0)
z
dsr = 0

(9)

wherer0 2 Sm, m = 1; . . . ; Nc, and

Gmn(r; r0) =
1

tmtn

h

h

dz0
h

h

1

jP � P0j
dz: (10)

Equation (9) must be completed by the charge conservation lowr �
~Jm = 0,m = 1; . . . ; Nc. KernelsGmn(r; r0) (10) can be calculated
analytically and have logarithmic singularity ifr = r0. For small�,
calculations with this singularity can be unstable. Therefore, we sub-
stitute both of the one-dimensional integrals in (10) by quadrature for-
mulas of rectangles or trapezoids.

Forhn 2 [h0n; h
1

n], the formula of rectangles gives us the following
kernels:

Gmn(r; r0) = 1 jr � r0j2 + (hm � hn)2 : (11)

Obviously (11) is an infinitely thin current sheet approximation where
sheets have heightshn. In this case, valueshn are fitting parameters of
the method.

To avoid fitting parameters that have a strong influence on the ac-
curacy of the method, the trapezoid formula is used. Form = n, the
kernel has the form

Gmm(r; r0) =
1

2

1

jr � r0j
+

1

jr � r0j2 + t2m
: (12)

This approach show good precision and numerical stability for prob-
lems with finite thickness of conducting and dielectric layers.

IV. STREAM FUNCTION

For the sheet current, well-known stream function representation is
used. Stream function (T -function) m(r) is defined for each single-
connected conductor on the base of charge conservation law. In our
case,

Jm;x(r) = @y m(r) Jm;y(r) = �@x m(r): (13)

Or, if ~	 = (0; 0;  (r)), then ~Jm = r � ~	.
 m(r) has the sense and dimension of a full current. Let� 2 S be

any open curve inSm with the originr0 and endr1. The full current
through this curve is thenI(r0; r1) =  m(r1) �  m(r0). The full
current does not depend on a specific curve joiningP0 andP1.

Let us introduce the necessary agreements concerning functions
 m(r). We assume the normal current distribution through terminals
is homogeneous and m(x; y) = 0 on a nonterminal part@S0m of

boundarySm. We define the total current circulating around a hole
in Sm as the total current through any curve joining@S0m and the
boundary of the hole. The total current does not depend on the choice
of the joining curve.

Substituting (13) into (9), we obtain the set of equations for functions
 m(r), m = 1; . . . ; Nc

��sm� m(r0)+
1

4�

N

n=1 S

r n(r); rxyGmn(r; r0) dsr = 0:

(14)

Let Ih; k be the full currents circulating around the holes
k = 1; . . . ; Nh, the boundary conditions for (14) are then

 m(r) = Ih; k; r 2 @Sh; k; k = 1; . . . ; Nk (15)

 m(r) =Fm(r); r 2 @Sext;m; m = 1; . . . ; Nc: (16)

FunctionFm(r) is defined by the properties of (r) and terminal cur-
rent distribution.Fm(r) are linear in the limits of terminals, are con-
stant on the nonterminal boundaries, andFm(r) = 0 on @S0m, m =
1; . . . ; Nc.

Equation (14), together with boundary conditions (15) and (16),
completely define the current distribution in the circuit and allow us to
define the inductance matrix.

Perfect conducting foils are incorporated in (14)–(16) if�sm = 0 and
kernels are as shown in (11).

V. MATRIX OF INDUCTANCES

For the definition and calculation of an inductance matrix, we use an
energy approach. The functional of full energy has the form [1]

E =
1

2

N

n=1 V

�0�
2

nJ(P )
2 + ~J(P ) � ~A(P ) dv (17)

where ~A is a vector potential,~B = r � ~A. For the stream function,
the approximate expression for full energy is

E =
�0
2

N

n=1 S

�ns (r n)
2 dsn

+
�0
8�

N

n=1

N

m=1 S

dsn

S

(r n; r m)Gmn dsm:

(18)

Let ~I = (Ih; 1; . . . ; Ih;N , It; 1; . . . ; It; N ), whereIt; i are full cur-
rents through terminal sequencesi = 1; . . . ; Nt (N = Nh+Nt). As
the problem (14)–(16) is linear, then (18) is a positive quadratic form
with respect to~I . It means that there is anN � N symmetric posi-
tive–definite matrixL

2E = (L~I; ~I): (19)

Matrix L is the matrix of self and mutual inductances.
Inductance matrixL allows us to calculate fluxoids related to holes

and terminal currents. Fluxoid� is the contour integral over a closed
or open [11] curve� 2 Sm

� =
�

�0�
m
s
~Jm + ~A � d~l�: (20)

Fluxoids~� = (�1; . . . ; �N ) can be easily calculated as~� = L~I [11].
In contrast with [10], it is not necessary to introduce special contours
for calculation of these values.
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VI. NUMERICAL TECHNIQUE

The method of computation of elements of the inductivity matrix
consists of the solution of sequence of boundary value problems
(14)–(16) with special excitation currents and calculation of the free
energy.

As ~� = LI , it is possible to findL calculating fluxoids (magnetic
fluxes for perfect conductors [10]). In our case, it appeared to be more
complicated, more time consuming, and less numerically stable than a
full-energy approach (18), (19).

The finite-element method for (14)–(16) is the extension of the
method [11]. For simplicity, we consider the case of one conductor.
The extension on a multiconductor case is straightforward. Below, the
conductor indexes are omitted.

The bilinear forma(u; v) for “weak” [12] formulation of the
problem (14) is

a(u; v) = �s

S

(ru(r); rv(r))ds

+
1

4�
S

ds0

S

(ru(r); rv(r0))G(r; r0)ds: (21)

The principal value integral in (14) was integrated by parts. Form
a(u; v) is symmetric and for thin enough conductors positively
definite because foru = v it coincides with the expression for the full
energy (18).

For the triangulation ofS, let I be the set of indexes of internal
points of the mesh andJ be the indexes of all nodes including boundary
nodes. The unknown function (x; y) is approximated by linear finite
elements [12]. The prescribed boundary values of (x; y) are taken
into account by the following approximation:

 (x; y) �  h (x; y) =
j2J

 h
j u

h
j (x; y) (22)

where h
j are the approximate values of (x; y) in the nodes of mesh

anduhj (x; y) are the basic functions of finite-element interpolation
[12]. Setting in (21)u(x; y) =  h(x; y), v(x; y) = uhi (x; y) one
can derive the following system of linear equations:

j2J

a(uhi ; u
h
j ) �  

h
j = 0; i 2 I: (23)

Equation (23) can then be rewritten as system of linear equations for
 h
i , i 2 I with a symmetric dense matrix where the nonzero right

part is formed by terms with prescribed boundary values (x; y) (15),
(16). We solve finite-element equations using a Cholesky CLAPACK
routine.

The program implementation of finite-element method meets some
difficulties. Expression (21) contains quadruple integrals. Calculation
of these integrals over triangles is the most CPU time-consuming part
of the algorithm. Singular integrals are calculated analytically [13].
Nonsingular integrals are calculated numerically. The order of quadra-
tures depends of the proximity of mesh cells.

The program includes an internal mesh generation preprocessor.
There are no restrictions on the shape of the circuits.

Our program is written on C. Except visualization, the program is
platform independent. It is possible to convert AutoCAD draw to input
file format of our program.

VII. EXAMPLES

A. Strips Over Ground Plane

Recently, the survey of inductance extraction programs was pub-
lished [2]. The preliminary version of our program ML participated in
this comparison. In completing of [2], consider a simple problem: strip

Fig. 1. Strip over hole in ground plane (top view).

Fig. 2. Inductance coefficients for a strip line over a hole in the ground plane
obtained by the finite-thickness approach.

over ground plane. The strip is 10-�m width, 40-�m length, andd0 =
t1 = 0:15 �m. The ground plane is 0.1-�m thick and� = 0:09 �m.
The exact inductance is 0.773/10�m. Our result is 0.77/10�m; the
error is 0.1%. These results were obtained on the mesh with 693 un-
knowns with cells diameter of about 1�m. Total CPU time (WIN-
DOWS NT, P-166) was 200 s. The ground plane was meshed and mag-
netic field penetration was taken into account.

Our program appeared to be fast and accurate enough to calculate
ground-plane effects. Treating the ground plane as a “mirror plane”
leads to a difference in results up to 20% [2].

B. Strip Over a Hole in the Ground Plane

Consider essentially a 3-D two-layer problem, strip over hole in
ground plane (Fig. 1). This structure is a typical element of many cir-
cuits. The hole leads to an increase of the inductance of the strip.

The inductance matrix has dimension two.L11 is the self inductance
of hole,L22 is the self inductance of the current path, which includes
a strip and ground plane with a current flowing from one side of the
hole, andL12 is mutual inductance. The inductivity of the stripL is
calculated under the condition of zero fluxoid in the holeL = L22 �

L2

12=L11.
For a stretched hole (d� l in Fig. 1),L can be approximately calcu-

lated by means of 2-D transmission-line programs [9]. In [9], the results
of measurements and calculations for the next values of parameters are
presented:l = 12:7 �m,D = 5:1 �m, t0 = 0:32 �m, d0 = 0:41,
t1 = 0:223�m, and� = 0:125�m. Settingd = 50�m,w = l (Fig. 1)
for the finite-thickness conductors, we obtainL = 0:336 pH/�m. From
[9], L � 0:34 pH/�m. The results coincide with good accuracy.
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For a square or narrow gap (d � 2D + l), two-dimensional ap-
proximation is irrelevant. Our results for finite-thickness conductors
are shown in Fig. 2, wheret0 = 0:1 �m,d0 = 0:15 �m, t1 = 0:2 �m,
� = 0:09 �m, andl = 5, D = l=2, 2w + d = 4l. The values of
L22 andL do not converge to the inductance of the strip without a hole
because the current in ground plane needs to flow around the cut.

VIII. C ONCLUSIONS

In this paper, we have proposed a new numerical technique for
analyzing planar multilayer superconductor circuits. The developed
program allows us to calculate inductances for realistic 3-D circuits
yielding very reasonable CPU time.

Our program can be applied for calculation of inductances of perfect
conductors simply setting to zero the London penetration depth.

The results of this paper can be extended to the case of impedance
calculation of normal conductors.

The program can be implemented as a component in electromagnetic
computer-aided design (CAD) complexes.
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A Design of the Ceramic Chip Balun Using the Multilayer
Configuration

Dae-won Lew, Jun-Seok Park, Dal Ahn, Nam-Kee Kang,
Chan Sei Yoo, and Jae-Bong Lim

Abstract—This paper presents the design method and performance
characteristics of a chip-type balun using a multilayer structure. The
design method for a chip-type balun is based on the lumped-element
equivalent circuit of quarter-wave transformer. The proposed design
method and equivalent circuit can make it easy to design the ceramic
multilayer chip-type balun. The size 2012 and 3216 chip-type baluns
were designed and fabricated using the proposed design method and the
equivalent-circuit model of a quarter-wave transformer. Fabrications
and measurements of designed chip-type baluns show smaller size than
conventional chip-type baluns and good agreement with simulated results.

Index Terms—Multilayer structure, quarter-wave transformer, 2012 and
3216 chip-type balun.

I. INTRODUCTION

Multilayer configurations can provide several advantages in the in-
tegration and compaction of RF and microwave components, circuits,
and systems. Another reason for employing the multilayer configura-
tions is that several circuits function such as baluns, coupler, etc., which
are difficult to realize in a single-layer planar configuration, can be ob-
tained conveniently in two- or multiple-layer configurations. Several
kinds of multilayer passive components, such as filters, couplers, and
balun, have been developed and each design methods and fabrication
procedures have been reported. The baluns and couplers require no sus-
pended substrate techniques. Hence, they can be easily incorporated in
the design of a variety of components such as mixers, multipliers, and
push–pull class-B amplifiers [1]–[4].

In this paper, an approach for the design of a chip-type balun using
a multilayer structure is presented. The presented design method for
the chip-type balun is developed using the equivalent circuit of a
quarter-wavelength transformer. By employing the proposed design
method and equivalent-circuit model, the designed multilayer chip
balun configuration can be made more compact and flexible, providing
better performances. The designed chip-type balun was realized by
implementing the multilayer chip inductors and capacitors. Each
lumped element was implemented using the ceramic material and
Ag metal layers. The dielectric constant was chosen to be six for the
implementation.

This paper presents the experimental results showing the changing
of the frequency characteristics with a lumped-element value. Simula-
tion results and experimental measurements for the designed chip-type
balun show a validation of the proposed design method.
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